Ведутся технические работы. Это может временно повлиять на скорость работы сайта. Приносим извинения за неудобства и благодарим за ваше понимание!
Химики из США и Италии получили ковалентный органический каркас, состоящий из связанных друг с другом катенановых органических фрагментов, и исследовали его свойства. Сначала ученые синтезировали катенановый органический каркас с ионами меди и охарактеризовали его кристаллическую структуру. А затем им удалось связать ионы меди в прочный цианидный комплекс и выделить чисто органический катенановый полимер.
Строение катенановых цепочек в кристалле ковалентного каркаса.
На трех картинках показаны фрагменты с разным количеством катенановых фрагментов
© Omar M. Yaghi et al. / Nature Synthesis, 2023
Металл-органические и ковалентные органические каркасы — это вещества с пористой упорядоченной кристаллической структурой, в которых органические фрагменты соединены между собой прочными ковалентными связями. При этом в металл-органических каркасах (MOF — metal-organic frameworks) органические фрагменты связаны с ионами металлов, а в ковалентных органических каркасах (COF — covalent organic frameworks) — существуют сами по себе. Но ковалентными каркасами иногда называют и содержащие ионы металлов полимеры, в которых эти ионы не играют ключевую роль в связывании органических фрагментов друг с другом.
Помимо ковалентных связей, упорядоченные каркасы могут содержать и топологические связи — так называют тип связи между молекулами, которые механически скреплены друг с другом и не могут расцепиться. Существует несколько типов соединений с топологическими связями, и один из самых известных — это катенаны, в которых два циклических органических фрагмента связаны друг с другом, как два сцепленных кольца. И хотя химики уже получили несколько металл-органических каркасов, содержащих катенановые фрагменты, направленно получать чисто органические поликатенановые каркасы химики не умеют.
Поэтому ученые под руководством Омара Ягхи (Omar M. Yaghi) из Калифорнийского университета в Беркли решили попробовать получить и исследовать новый органический каркас, состоящий из связанных друг с другом катенанов. Для этого химики смешали фенантролиновый комплекс меди, содержащий альдегидные группы, с органическим триамином. Смесь веществ нагревали три дня при 150 градусах Цельсия, а затем промыли и высушили. В результате получился желто-коричневый порошок.
Чтобы выяснить строение полученного соединения, химики использовали твердофазные ИК- и ЯМР-спектроскопию. Они обнаружили, что сигналов карбонильной группы исходного комплекса в спектрах не было, а вместо них появились сигналы продукта с двойными связями азот-углерод. Так химики сделали вывод, что во время реакции аминогруппы органического амина присоединились к карбонильным группам медного комплекса, и образовались двойные связи азот-углерод. А за счет того, что в исходном фенантролиновом комплексе лиганды были сцеплены друг с другом нужным образом, в результате реакции образовались катенановые фрагменты. Кристаллическую структуру полученного поликатенана химики выяснили с помощью порошкового рентгеноструктурного анализа и экспериментов по дифракции электронов. Она представляла собой бесконечные упорядоченные цепочки из связанных друг с другом колец (катенанов). И несмотря на то что в этой структуре есть ионы металла, авторы статьи называют полученное вещество ковалентным органическим каркасом, потому что связи с ионами меди не играют ключевой роли в поддержании его структуры.
Далее, чтобы избавиться от ионов меди в структуре каркаса, химики смешали его с водным раствором цианида калия. При этом медь перешла в устойчивый цианидный комплекс, а из металл-содержащего органического каркаса образовался чисто органический каркас. При этом кристалличность вещества уменьшилась, и исследовать его структуру методами, подходящими для кристаллических веществ, у химиков не получилось. Но примерное представление о структуре удалось получить с помощью компьютерного моделирования методом молекулярной динамики.
Так химики получили ковалентный органический каркас с топологическими связями между циклическими органическими фрагментами. Его твердость по сравнению с исходным медь-содержащим каркасом уменьшилась примерно в три раза, а эластичность увеличилась: модуль Юнга металл-содержащего каркаса составил 3.81 гигапаскаля, а после удаления ионов меди достиг 1,41 гигапаскаля. Также ученым удалось получить еще два схожих каркаса с немного отличающимися органическими фрагментами. Обычно катенановые фрагменты химики используют для создания молекулярных машин.
Статья опубликована в журнале Nature Synthesis
Источник: Михаил Бойм nplus1.ru
( ! ) Warning: Invalid argument supplied for foreach() in /home/domains/malitikov.ru/public_html/wp-content/themes/malitikov/single.php on line 44 | ||||
---|---|---|---|---|
Call Stack | ||||
# | Time | Memory | Function | Location |
1 | 0.0000 | 350216 | {main}( ) | .../index.php:0 |
2 | 0.0000 | 350496 | require( '/home/domains/malitikov.ru/public_html/wp-blog-header.php ) | .../index.php:17 |
3 | 0.1709 | 8492792 | require_once( '/home/domains/malitikov.ru/public_html/wp-includes/template-loader.php ) | .../wp-blog-header.php:19 |
4 | 0.1723 | 8516520 | include( '/home/domains/malitikov.ru/public_html/wp-content/themes/malitikov/single.php ) | .../template-loader.php:106 |
( ! ) Fatal error: Allowed memory size of 536870912 bytes exhausted (tried to allocate 67108872 bytes) in /home/domains/malitikov.ru/public_html/wp-includes/class-wpdb.php on line 2323 | ||||
---|---|---|---|---|
Call Stack | ||||
# | Time | Memory | Function | Location |
1 | 0.0000 | 350216 | {main}( ) | .../index.php:0 |
2 | 0.0000 | 350496 | require( '/home/domains/malitikov.ru/public_html/wp-blog-header.php ) | .../index.php:17 |
3 | 0.1709 | 8492792 | require_once( '/home/domains/malitikov.ru/public_html/wp-includes/template-loader.php ) | .../wp-blog-header.php:19 |
4 | 0.1723 | 8516520 | include( '/home/domains/malitikov.ru/public_html/wp-content/themes/malitikov/single.php ) | .../template-loader.php:106 |
5 | 0.4650 | 22761784 | WP_Query->__construct( $query = ['post_type' => 'post', 'post_status' => 'publish', 'fields' => 'ids', 'posts_per_page' => -1, 'no_found_rows' => TRUE, 'orderby' => 'none'] ) | .../single.php:65 |
6 | 0.4650 | 22761784 | WP_Query->query( $query = ['post_type' => 'post', 'post_status' => 'publish', 'fields' => 'ids', 'posts_per_page' => -1, 'no_found_rows' => TRUE, 'orderby' => 'none'] ) | .../class-wp-query.php:4081 |
7 | 0.4650 | 22761784 | WP_Query->get_posts( ) | .../class-wp-query.php:3949 |
8 | 0.4655 | 22773648 | wpdb->get_col( $query = 'SELECT wp_posts.ID\n\t\t\t\t\t FROM wp_posts \n\t\t\t\t\t WHERE 1=1 AND wp_posts.post_type = \'post\' AND ((wp_posts.post_status = \'publish\'))\n\t\t\t\t\t \n\t\t\t\t\t \n\t\t\t\t\t ', $x = ??? ) | .../class-wp-query.php:3300 |
9 | 0.4655 | 22773648 | wpdb->query( $query = 'SELECT wp_posts.ID\n\t\t\t\t\t FROM wp_posts \n\t\t\t\t\t WHERE 1=1 AND wp_posts.post_type = \'post\' AND ((wp_posts.post_status = \'publish\'))\n\t\t\t\t\t \n\t\t\t\t\t \n\t\t\t\t\t ' ) | .../class-wpdb.php:3107 |