Физика 11 класс (Урок№22 — Фотоэффект.)

Физика 11 класс
Урок№22 — Фотоэффект.

мы узнаем:
— о предмете и задаче квантовой физики;
— гипотезу М. Планка о квантах;
— в чём заключались опыты А.Г. Столетова;
— определение фотоэффекта, кванта, тока насыщения, задерживающего напряжения, работы выхода, красной границы фотоэффекта;
— уравнение Эйнштейна для фотоэффекта;
— законы фотоэффекта;
мы научимся:
— распознавать, наблюдать явление фотоэффекта, анализировать законы фотоэффекта;
— записывать и составлять в конкретных ситуациях уравнение Эйнштейна для фотоэффекта и находить с его помощью неизвестные величины;
— вычислять в конкретных ситуациях значения максимальной кинетической энергии фотоэлектронов, скорости фотоэлектронов, работы выхода, запирающего напряжения, частоты и длины волны, соответствующих красной границе фотоэффекта;
мы сможем:
— применять законы Столетова при решении задач;
— находить информацию о работах Столетова.

Гипотеза Макса Планка формулируется следующим образом: атомы испускают электромагнитную энергию не непрерывно, а отдельными квантами (порциями).
Квантовая физика – раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.
В 1886 году немецкий физик Герц обнаружил явление электризации металлов при их освещении.
Явление вырывания электронов из вещества под действием света называется внешним фотоэлектрическим эффектом.
Законы фотоэффекта были установлены в 1888 году профессором Московского государственного университета им. М.В. Ломоносова Александром Григорьевичем Столетовым.
Первый закон фотоэффекта: фототок насыщения – максимальное число фотоэлектронов, вырываемых из вещества за единицу времени, – прямо пропорционален интенсивности падающего излучения.
Величина фототока насыщения, определяемая максимальным числом фотоэлектронов, вырываемых из вещества за единицу времени, прямо пропорциональна интенсивности падающего на вещество излучения.
Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.
Третий закон фотоэффекта: для каждого вещества существует граничная такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения. Эта минимальная частота излучения называется красной границей фотоэффекта.
Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.
Задерживающее напряжение – минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.
Максимальная кинетическая энергия электронов выражается через задерживающее напряжение.