Химики из Оксфордского университета и лаборатории IBM Research в Цюрихе впервые синтезировали новую форму углерода. Она имеет вид кольцеобразной молекулы, состоящей из 18 атомов. Успеха учёные сумели добиться, научившись манипулировать отдельными группами атомов.
Циклоуглерод
© Katharina Kaiser et al.
Углерод обладает значительным числом аллотропных форм, самые известные среди них — это алмаз, графит, разнообразные фуллерены, графен и углеродные нанотрубки. Свойства этих форм значительно различаются, часть из них относится к аморфным веществам, часть – к кристаллическим. «Помимо хорошо изученных форм углерода, существуют менее известные формы, и одна из них, в частности, — неуловимые циклоуглероды, где каждый атом соединён только с двумя соседями, а молекула имеет форму кольца, — говорит Катарина Кайзер (Katharina Kaiser) из Цюриха. — Обсуждаемая в течение многих лет структура циклоуглеродов была неизвестна, и обсуждались две возможности: либо со всеми связями в кольце одинаковой длины (только двойные связи), либо с чередующимися более короткими и более длинными связями (одинарные и тройные связи). Доказательства существования циклоуглеродов были получены в газообразной фазе, но из-за их высокой реакционной способности молекулы не могли быть выделены и охарактеризованы — до самого последнего момента».
Исследователям удалось синтезировать циклоуглерод путём манипуляций с атомами при помощи атомно-силового микроскопа высокого разрешения (о принципе его работы можно прочитать в особом очерке) на инертной поверхности из меди, покрытой тонким слоем NaCl, при температуре всего пять кельвинов (–268 °C). Начав с создания линейных цепочек из атомов углерода, учёные затем перешли к попытке создать циклоуглерод, в кольце которого замкнуто 18 атомов. Исходным материалом стала молекула оксида углерода C24O6, имеющая треугольную форму. В ней к центральному кольцу из 18 атомов углерода добавлены 6 групп монооксида углерода CO, которые повышают стабильность молекулы.
Молекулы C24O6 были обнаружены на медно-соляной подложке при помощи атомно-силового микроскопа, а затем исследователи, приложив импульсы напряжения к зонду микроскопа, сумели удалить из них группы CO. «Возможность формирования более крупных структур с высоким содержанием углерода путём слияния молекул и манипуляций с атомами открывает путь для создания более сложных молекул с высоким содержанием углерода и новых углеродных аллотропов. В итоге сделанные на заказ молекулярные структуры могут быть использованы в качестве элементов для молекулярной электроники, основанной на переносе одного электрона», — говорят о своем методе учёные.
Исследование было опубликовано в журнале Science
Источник: polit.ru