Исследователи из Калифорнийского университета в Лос-Анджелесе создали то, что безусловно можно назвать самым маленьким холодильником в мире на сегодняшний день. И если вы подумали о какой-то миниатюрной копии привычного всем агрегата, стоящего на вашей кухне, то вы глубоко ошиблись. То, что создали калифорнийские ученые, на самом деле является крошечным термоэлектрическим охладителем, толщина которого составляет всего 100 нанометров.
Охладитель состоит из двух слоев различных полупроводниковых материалов, зажатых между металлизированными пластинами, выполняющими роль электродов. Когда одна сторона такого «бутерброда» нагревается, а друга остается более холодной, область контакта между полупроводниковыми пластинами выступает в роли генератора, вырабатывающего электричество. Подобные термоэлектрические преобразователи уже достаточно давно используются в космической технике. К примеру, в космических аппаратах серии Voyager, в марсоходах Curiosity и Perseverance, термоэлектрические генераторы, обернутые вокруг ядра из вырабатывающего тепло плутония, обеспечивают энергией системы этих аппаратов и могут делать это непрерывно на протяжении нескольких десятилетий.
Однако, этот термоэлектрический эффект начинает работать совершенно наоборот, когда через полупроводниковую структуру пропускается электрический ток. В таком случае одна сторона становится горячей, а вторая — охлаждается, позволяя этому устройству выступать в роли холодильника. Ученые считают, что в будущем элементы Пельтье нового типа, более эффективные и менее дорогие, чем нынешние, смогут заменить компрессор и газовую систему с фреоном в обычных бытовых холодильниках.
Вернемся к созданному миниатюрному холодильнику. Это устройство было создано из двух достаточно обычных полупроводниковых материалов — из теллурида висмута и теллурида сурьмы-висмута. Тонкие пленки этих материалов были получены таким же способом, как и первые образцы графена. Ученые приклеили обычный скотч к поверхности кристаллов и после отделения скотча от кристалла на его поверхности были найдены «хлопья» материала условно одноатомной толщины. Позже этим хлопьям была придана соответствующая форма и они были «сложены» в пакет, толщиной всего 100 нанометров. Полный активный объем структуры термоэлектрического охладителя не превышает одного кубического микрометра и, естественно, его невозможно увидеть невооруженным взглядом.
В настоящее время калифорнийские ученые занимаются поисками альтернативных вариантов полупроводниковых материалов, использование которых позволит кардинально увеличить эффективность этих микрохолодильников. Первые эксперименты с такими устройствами показали очень высокую скорость их реакции, которая является следствием их малой массы. При включении такого элемента он начинает холодить сразу же, с самой минимальной задержкой, в миллион раз быстрее, чем аналогичный холодильник объемом в один кубический миллиметр.
Такое свойство открывает достаточно большие перспективы для применения таких миниатюрных охлаждающих устройств. В будущем, вполне вероятно, большое количество подобных устройств может быть помещено прямо на кристаллы полупроводниковых чипов, динамически изменяя степень охлаждения (количества вырабатываемого ими холода) в зависимости от текущего значения нагрузки на логические схемы этого чипа.