0:00 — Ковёр Серпинского
0:16 — Дерево Пифагора
0:32 — Дерево Пифагора (версия 2)
0:46 — Красивый фрактал из окружностей
1:10 — Кривая дракона
1:30 — Папоротник Барнсли
1:47 — Вопрос из игры «Что? Где? Когда?»
2:00 — Снежинка Коха
2:10 — Треугольник Серпинсого
2:23 — Множество Кантора
2:40 — Кривая Гильберта
2:50 — Множество Мандельброта
3:15 — Фрактал на основе центроида
3:25 — ОТВЕТ на вопрос!
ВОПРОС
— Как именно отмечаются точки в множестве Мандельброта?
— Во время этой сцены в левом нижнем углу отразил всю, указав формулу. Например, возьмем c=–1. Теперь строим последовательность по указанной рекуррентной формуле:
z₀=0
z₁=(z₀)²+c=0–1=–1
z₂=(z₁)²+c=1-1=0
z₃=(z₂)²+c=0-1=-1
Все дальнейшие члены также равны либо нулю, либо минус единичке. Значит, последовательность ограничена. Таким образом, точку (–1;0) комплексной плоскости отмечаем белым цветом. Вторая координата нулевая, т.к. для c=–1 мнимая часть равна нулю.
Аналогичным образом пробегаем и другие комплексные числа. И если для некоторого числа c=a+b∙i последовательность неограничена, то соответствую точку оставляем черной.